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Entire-Domain Basis MOM Analysis of Coupled
Microstrip Transmission Lines

Jonathan S. Bagby, Ching-Her Lee, Y. Yuan, and D. P. Nyquist, Member, IEEE

Abstract—A full-wave spectral-domain integral equation for-
mulation is used to analyze coupled open-boundary microstrip
transmission lines. A general rigorous formulation is special-
ized to the case of two identical uniform lines and a method of
moments (MOM) solution is implemented. In contrast with ear-
lier subdomain basis MOM solutions, entire-domain basis
functions which incorporate appropriate edge conditions for
transverse and longitudinal current components are utilized.
This allows close-form evaluation of relevant spatial integrals
and results in improved accuracy using far fewer terms. Nu-
merical results in the form of propagation constants and cur-
rent distributions are presented for the dominant and first two
higher-order coupled modes, and compare favorably to results
of other techniques.

I. INTRODUCTION

HE ANALYSIS of coupled microstrip transmission
lines is a problem of both considerable practical in-
terest, and of long history. Traditionally, various quasi-
static methods (e.g., [1], [2]) have been used to compute
the propagation characteristics of the coupled system.
However, such methods are inherently inaccurate at higher
frequencies, and are also found to be inadequate even at
low frequencies for many useful combinations of sub-
strate thickness and dielectric constant [3]. Additionally,
in analysis of open systems potentially important surface-
wave and radiation effects are neglected. In such cases a
more accurate full-wave analysis must be utilized.
Recently a rigorous full-wave spectral-domain integral
equation formulation has been advanced for analysis of
generalized microwave integrated circuit configurations
[4]. A subdomain basis MOM solution for coupled uni-
form microstrip transmission lines has been implemented,
and yields accurate results in the form of current distri-
butions and propagation constants for the dominant and
several higher-order modes [5]. However, this method re-
quires a large number of basis functions to achieve de-
sired accuracy, yielding lengthy computation times.
In this work an entire-domain basis Galerkin’s method
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MOM solution of the integral equation formulation is im-
plemented. The basis functions are carefully chosen to in-
corporate expected physical effects at the edges of the
strips. Besides the advantage of allowing closed-form
evaluation of relevant spatial integrals, it is found that
excellent accuracy is obtained for as few as three basis
functions for each current component of low-order modes,
yielding compact approximate closed-form solutions for
currents, as well as resulting in a substantial savings in
computation time.

In Section II the mathematical formulation of the phys-
ical problem and the numerical solution technique utilized
are introduced. The formulation is specialized to the case
of natural modes of a pair of identical uniform coupled
microstrip transmission lines. Numerical results in the
form of propagation constants and strip current distribu-
tions (eigenvalues and eigenmodes) for the dominant and
several higher-order eigenmodes of the coupled micro-
strip system are presented in Section III. Conclusions and
areas for further investigation are discussed in Section IV.

II. FORMULATION

Consider the general open coupled microstrip geometry
depicted in Fig. 1. A rigorous solution of Maxwell’s
equations results in a system of coupled integral equations
satisfied by the unknown device surface currents [4]. For
the axially-uniform systems as depicted in Fig. 2, an as-
sumed propagation dependence of exp [ j(wt — {z)] allows
these equations to be simplified. For an arbitrary system
of N uniform coupled microstrip transmission lines [5],
the following axially-transformed coupled system of in-
tegral equations holds:

) g] Se,

c k(BN Al =0, pFel, j=1,...,N (D

A4

Here E, is the unknown axially-transformed eigenmode
surface current on the ith strip, g is the transformed elec-
tric Hertzian potential Green’s dyad of the microstrip
background structure, { is the unknown eigenvalue (prop-
agation constant) of the coupled mode, , is a unit tangent
to the jth strip, & is the cross-sectional contour of the ith
strip, and V = V, + jiz = (9/3x)% + (8/9y)9 + jiZ is
the axially-transformed del-operator.

0018-9480/92%03.00 © 1992 IEEE



50 ' IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 1, JANUARY 1992

Yy
cover region X
Vv 101, €
o8 ¢ / Z

ground ) an

Fig. 1. Generalized system of N nonuniform coupled integrated microstrip
‘ transmission lines.
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Fig. 2. Two identical axially-uniform thin coupled microstrip transmis-
' sion lines.

The Hertzian potential Green’s dyad decomposes into
a principal and a reflected part, g = Ig” + g’, where g”
is the 2-dimensional unbounded-space Green’s function
in integral representation, and the reflected part has the
dyadic form:

I & I N L
g =xg X+ X +y<5;gcx + 8.9 +Js°gcz> + Zg.Z.
| )

The scalar components of the reflected Green’s dyad are
given in terms of inverse-transform spectral integrals:

R, (N
o o (RM PIE G =X p=pe(y+y)
8n (= R,(N) 2 . (3
— TP,
8 QN

The wavenumber parameters are defined as A = §‘2 +
£ pl = )\2 - k2 p} =A% — k}, and the reflection and
coupling coefficients are given by

_ Pc — prooth (pst)
" ope + prcoth (pen)’

_ Kp: — pytanh (pp)
Kp. + pytanh (psr)

n

c 2K - 1Dp,
[p. + preoth (pi)] [Kp. + pytanh (pH)]°

€f
€ c

K @

A. Two Identical Microstrip Lines

Consider a simple coupled system consisting of a pair
of identical open microstrip transmission lines. Assume
that the lines are infinitely thin and are extended axially
to infinity, as shown in Fig. 2, where b is half of the spac-
ing between the centers of the two microstrip lines and w
is half of the strip width. In this case (1) reduces to

2
i - lim 2

1 2 Sg (ke + VVIE(H, y =05 0)
y— = i \

kLY =0 0d =0 j=12 9
where interchange of differentiation and integration is
valid when y # 0. As y = 0 the contour of spatial inte-
gration is a path along the x-axis, denoted £,. The tangen-
tial unit vector and the surface current decompose as 7 =
xt, + 2t k= Xk, + Zk,. To evaluate (5) we rewrite the
integral representations of the scalar components g¥ and
8i,n,c 88

g{n,c(?,x,; g‘) = S - iﬁn,c(?fx,; E, g‘) dg

eIE =) o =pelyl

i? =
47p,
N R eI x=x) g =pey
by =Ry ————. (6)
47p,
i C

Substituting (6) into (5) in the limit y — 0 yields two
coupled integral equations by letting i = £ and 7 = 3.
They are

% S S‘” =)
N k:(1 + R)k
x P Iy [k ( L

i=1 ¢

—EA + R — p.C)(Ek, + k)l dEdx' =0 (Ta)
i é S 2 e
“ A A S—oo 47p, kel + RO,

— §(A + R — p.C) ¢k, + $k)1 dE dx’ = 0. (7b)

The final form of the equations for the coupled microstrip
structure is obtained by resolving integration paths as
=[-b—-—w, —b+wland {, =[b — w, b + w]:

Thtw pe jEG—x)
£ S S '[k2Rk, — E(R — C")
—b-w J-o 47['])6

(ko + $ky)] dE dx’

S“W S“’ efte=x)
+ k:Rky — -
b ) Ty KRG, — ER - C1)

* (ko + Tkp)ldEdx' =0 (8a)
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-b+w poo ejf(x_xr)
-4 S S [kiRk; — ¢R - C")
—b—w J-o 47('pc

* (Eky + Ty df A
§b+w S‘“’ plEt=x")
+ b—w J—o 47l'pc
ot Bk + Tk dE dx’ = 0. (8b)

Here k,, k,;, and k,, k,, are the transformed transverse
and axial current components on strips 1 and 2, respec-
tively, and

[k2Rky, — ¢(R — C')

2p,
R=1+R =
Pe + pycoth ( Drt)
2K — Dp?
C' = pC = )p
[p. + pyceoth (p)] [Kp. + pytanh (psn)]

®

Equation (8a) and (8b) are the appropriate coupled in-
tegral equations for natural modes of the uniform micro-
strip structure of Fig. 2. They have a nontrivial solution
only when { = {,, is an eigenvalue of the coupled system,
where m = 0, 1, - - - is the corresponding eigenmode
number. They are further simplified by taking advantage
of the symmetry in x inherent in the coupled structure.
This allows the coupled equations can be written in terms
of just one set of microstrip currents, where the other set
is taken as the appropriate symmetric or antisymmetric
extension. We now turn to'a MOM solution of the cou-
pled integral equations using entire-domain basis func-
tions.

B. Entire-Domain Basis MOM Solution

The effectiveness of a MOM solution for (8) depends
on a judicious choice of basis functions. These basis func-
tions should incorporate as closely as possible the physi-
cal conditions of the actual axial and transverse currents

on the microstrip. An overriding concern here is in the -

proper behavior of current components at the edges of the
microstrip lines. In this work, instead of using subdomain
basis functions which permit solutions satisfying the elec-
tromagnetic boundary conditions only at discrete points,
we use entire-domain basis functions for expansion of the
unknown surface currents and for testing the results (Gal-
erkin’s method). If the basis functions used closely re-
semble the unknown to be represented, the numerical so-
lution will yield results of increased accuracy using far
fewer terms.

It is a well known fact that the current distribution is
singular at the edges of an isolated microstrip. According
to Maxwell [6], the surface charge density distribution on
an isolated strip (in the absence of a film layer) is o(x) =
do/mN1 — (x/w)*, where gy is the total charge on the
strip and w is half-width of the strip. In the dynamic case,
this distribution applies to the TEM solution for the lon-
gitudinal surface current as long as the ground-plane is
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spaced far enough away from the strip [7]. For real hy-
brid-mode analysis, we can assume as a first step that the
longitudinal current distribution of the fundamental mode
follows the pattern of a pure TEM mode, and can be ex-
pressed approximately as k,(x’) = vo(x’), where v is the
phase velocity. The corresponding transverse current dis-
tribution can be obtained by use of the continuity equation
ok, (x')/0x + jk,(x') = —jwa(x") [5]. For any micro-
strip eigenmode the longitudinal current is singular at the
edges of the strip, while the transverse current is zero
there. The transverse current is usually small compared
to the longitudinal current (in the following analysis, it is
at least one order of magnitude smaller) and its magnitude
is proportional to the normalized strip width.

Based on the discussion above, it is found that Che-
byshev polynomials multiplied by appropriate edge-fac-
tors are suitable expansion functions for eigenmodes of
this structure. We choose Chebyshev polynomials of the
second kind, U, (x), to expand the transverse eigenmode
currents; the latter can accurately be represented by a lin-
ear combination of just few functions of this kind. Simi-
larly, Chebyshev polynomials of the first kind, T, (x), are
used for axial current expansion. Use of these weighted
functions has the additional advantage of allowing rele-
vant spatial integrals to be evaluated in closed form. Other
examples of use of weighted Chebyshev polynomials as
basis functions can be found (e.g., [8]). An instructive
compairson of the convergence properties of weighted
Chebyshev polynomials and regular trigonometric func-
tion is given in [9]. Based on this discussion, we expand
the unknown currents as follows:

' 2 N—-1 r_
k(') = \/; - <x b> 2 a,U, <£—2>
w n=0 w
N-1 .
B N W <’i———b> (10)
Y — b 2 n=0 w
S

Here a, and b, are the usual known expansions coeffi-
cients representing the contribution of each order of Che-
byshev polynomials U, (x) and T, (x) to the unknown sur-
face currents, and the square-root factors in front of the
summation terms give the anticipated edge behavior. To
test the coupled equations we follow Galerkin’s method
and utilize the same functions for testing. Tabulated in-
tegrals in [10] and the Appendix are used for the calcu-
lations involved, yielding the following equations for
symmetric eigenmodes of the coupled structure:

k. (x")

m

N-1

& ejfb ,
£ 2 a,m+ D S —— Tik:R — £*R — CN]
n=0 “°°£ Pc

N-1 L ejsb
@@ de = Z bt | S

TR~ C)Ipr 1 (EW) T, (Ew) dE = 0 (11a)
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N-1

= it
2 ;0 a,(n + D¢ S_ r Tiy(R — C')J,(Ew)

[

N-1 e ejsb
Ty (W) dE — 2 byw S_m -
« Ty [k*R = 2(R — C"J,(¢w)J, (Ew) dE = 0.

(11b)

Similarly, for antisymmetric modes we have

N-1 o JjEb
£ }_]0 a,(n + 1) S —— Tk*R - £*(R—-C")

i Ezpc
N-1 o jejgb
T 1 EW, 1 (Gw) dE — ngo b,w¢ S_oo p—
*THhR — C')y1 W, (Ew) d§ =0 (12a)

N-1 0 Jjkb
& A oan+ DY S T,(R — C')J,(kw)

I 2

N-1 o jejéb
aa(EW) dE = 2 byw X_m o
) TZ[kgR - ?2(R - C/)]Jm(EW)Jn(EW) dg =0.

(12b)

Here T, = cos (¢b) Re {j"} — sin (D) Im {j"}, T, =
cos (¢b) Im {j"} + sin (£b) Re {j"}. Integration limits
on the spectral variable £ can be further reduced by con-
sideration of the parity of the integrands; the results have
integration limits [0, o). The final equations can be writ-
ten in matrix form as

a ]

Z, Z. || ay_
{v } il

(13)
sz Zzz bO
L ov-1 ]

Each element in the (2N X 2N)Z matrix is in terms of a
spectral integral on £, and ag, - -+, ay_1, by, * -
are the unknown coefficients for the expansion polyno-
mials. To obtain a non-trivial solution the determinant of
the coefficient matrix must vanish; since matrix elements
depend on the unknown propagation constant ¢, we can
iterate to find eigenvalues ¢, for system eigenmodes. Nu-
merical results of this technique are given in the next sec-
tion.

"o by

III. NuMmEeRricaL REsULTS

The method described above was implemented to cal-
culate propagation constants (eigenvalues) and currents
(eigenmodes) for the fundamental and higher order modes

TABLE I
EIGENVALUES
Mode  10Ghz  20GHz 40 GHz
b/w EH, EH, EH,
1.10 3.00638  2.17164  2.23297 S .
1.25 2.98567  2.12381  2.21197 } ym“(;"‘m
1.50 2.95200  2.09482  2.19654 modes
Isolated 2.89586  2.06867  2.17533
1.50 2.83309  2.05419  2.15925 Antisymmetric
1.25 2.78686  2.01026  2.11995 i modes
1.10 275250  1.94495  2.05663

of the uniform coupled microstrip structure of Fig. 2. For
convenience in comparison with other results [11], [12]
the case ny = k¢/k, = 3.13, n, = 1.0, t = 0.635 mm, w
= 1.5 mm and a varying separation b is presented here.

A. Eigenvalues

Table I shows eigenvalues (normalized propagation
constants) for the fundamental and first two higher cou-
pled modes at operating frequencies near cutoff. Each
coupled mode is seen to agree with the well known fact
that ¢, < {0 < &, where §,, {,, and {; are eigenvalues
corresponding to antisymmetric, isolated, and symmetric
coupled modes, respectively. Also, the smaller the strip
separation b/w, the larger (smaller) the eigenvalues for
symmetric (antisymmetric) system modes, respectively.
When the separation of the coupled strips is large enough
(about b/w = 4), the eigenvalues converge to the cor-
responding ioslated one; indeed, the symmetric and anti-
symmetric modes can be viewed as emerging from the
corresponding isolated mode. Fig. 3 shows the dispersion
curve for the coupled fundamental EH, mode. As strip
separation decreases eigenvalues of the EH, symmetric
and antisymmetric system modes are separate further; ul-
timately, when the strips contact on inside edges, the EH,
symmetric mode goes to the EHy mode of an isolated strip
with double width, and the EH, antisymmetric mode goes
to the EH; mode of the same width-doubled strip, as ex-
pected. Eigenvalues for EHy and EH,; modes over a wide
range of frequency (up to 100 GHz) are calculated; the
dispersion curves for several different separations are
sketched in Figs. 4 and 5. The behavior of eigenvalues
for this coupled structure are seen to be in good agreement
with the results obtained by using the analysis in [1].

B. Eigenmode Currents

The axial and transverse current for each mode men-
tioned above are shown in Figs. 6-8. In numerically
quantifying currents we found three Chebyshev polyno-
mials sufficient to accurately represent the surface current
of low-order modes on the isolated microstrip. For cur-
rents on each microstrip of the coupled system, we uti-
lized the first five polynomials to achieve a more accurate
result. It is seen in the figures that due to the repulsion of
the charge, currents for symmetric modes have smaller
magnitude near the inside edge than at the outside edge,
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Fig. 3. Dependence of propagation constants (eigenvalues) { for dominant (EH,) eigenmodes of two coupled microstrip lines
upon line-to-line spacing; symmetric and antisymmetric coupled system modes are seen to emerge from the corresponding

isolated line EHy mode.
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Fig. 6. Eigenmode currents for isolated and coupled dominant (EH,) modes. (a) Transverse currents. (b) Axial currents.

a result intuitively expected. Similarly, antisymmetric
modes have larger currents near the inside edge. In all
cases, we can see that currents for isolated line lie be-
tween the two groups of currents of symmetric and
antisymmetric system modes.

IV. CoNCLUSION

A rigorous full-wave spectral-domain integral equation
formulation has been presented for accurate analysis of
coupled microstrip transmission lines. A method of mo-
ments solution utilizing entire-domain basis functions and
Galerkin’s method, incorporating appropriate edge con-
ditions for transverse and longitudinal current compo-
nents, permits closed-form evaluation of relevant spatial
integrals. In contrast with earlier subdomain basis solu-
tions, improved accuracy is obtained using far fewer

\

terms. Numerical results in the form of propagation con-
stants and current distributions for the dominant and first
two higher-order modes compare favorably to results of
other techniques.

A more difficult problem which can be rigorously
treated by the formulation presented here is the solution
in the case of coupled microstrip transmission lines op-
erating in lossy regimes, where excitation of surface
waves and the radiation spectrum in the integrated circuit
background structure could provide dominant coupling ef-
fects. This condition occurs when the propagation con-
stant of the coupled system falls below the eigenvalue of
a surface-wave mode supported by the integrated circuit
background slabe waveguide structure. In this case sin-
gularities in the spectral integrands move close to the real
axis, and complex-plane evaluation techniques become
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Fig. 7. Eigenmode currents for isolated and coupled first higher-order (EH, ) modes. (a) Transverse currents. (b) Axial currents.

necessary. Work along these lines is proceeding, and is
expected to yield results in the near future [13]-[15].

APPENDIX

Other than the tabulated integral formulas in [10] we
need to evaluate following integrals:

1
S V1 — x? cos axU, (x) dx
-1

1

V1 — x? sin axU, (x) dx

-1

(Al)

Gradshteyn’s [10] equation (7-321), p. 830, provides

1 .
S (1 = x>’ 2™ Chx) dx
-1

_ m2'77i"TQu + n)
B n!T (v)

-—v

vin(@.  (A2)

Using the fact U, (x) = C (x), which relates Chebyshev
to Gegenbauer polynomials, the above formula yields the
results:

1
5 V1 — x% cos axU, (x) dx
-1

_wn+1)

Joi1@@ Re {i"}
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Fig. 8. Eigenmode currents for isolated and coupled second higher-order (EH,) modes. (a) Transverse currents. (b) Axial
currents.

1
s 1 V1 — x% sin axU, (x) dx
T + 1)

= TJ,,H(a) Im {i"}. (A3)

A similar procedure can be used for evaluating the re-
maining integrals; refer to equation (7-355), p. 836 of
[10]:

1
. 1 T
So T2y 41 () sin ax ———= = (—1)" 7 Jp 1+ (@)

1 —x 2

dx
T— = (- T I(@).

A4
T (A4)

1
S T,, cos ax
0

From this we obtain the results:

1
dx

T —

S—1 cos axT, (x) T

05
(-7, (a),

! dx
sin axT, (x) ——
S—l @ Vi —x?
(-1 V27, (@),
0,

for odd n.

for even n.

for odd n.

for even n.
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Further algebra provides the followihg integral formulas
for use:

1
dx n
S—1 cos axT, (x) ﬁ Re {i"nJ,(a)}

wJ, (@) Re {i"}

1
. dx i
S—1 sin axT, (x) ————m Im {i"nJ,(a)}

wJ,(@) Im {i"} (A6)
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