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Entire-Domain Basis MOM Analysis of Coupled
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Abstract—A full-wave spectral-domain integral equation for-

mulation is usetJ to analyze coupled open-boundary microstrip

transmission lines. A general rigorous formulation is special-

ized to the case of two identical uniform lines and a method of

moments (MOM) solution is implemented. In contrast with ear-

lier subdomain basis MOM solutions, entire-domain bask

functions which incorporate appropriate edge conditions for

transverse and longitudinal current components are utilized.

This allows close-form evaluation of relevant spatial integrals
and results in improved accuracy using far fewer terms. Nu-
merical results in the form of propagation constants and cur-
rent distributions are presented for the dominant and first two
higher-order coupled modes, and compare favorably to results
of other techniques.

I. INTRODUCTION

T HE ANALYSIS of coupled microstrip transmission

lines is a problem of both considerable practical in-

terest, and of long history. Traditionally, various quasi-

static methods (e, g., [1], [2]) have been used to compute

the propagation characteristics of the coupled system.

However, such methods are inherently inaccurate at higher

frequencies, and are also found to be inadequate even at

low frequencies for many useful combinations of sub-

strate thickness and dielectric constant [3]. Additionally,

in analysis of open systems potentially important surface-

wave and radiation effects are neglected. In such cases a

more accurate full-wave analysis must be utilized.

Recently a rigorous full-wave spectral-domain integral

equation formulation has been advanced for analysis of

generalized microwave integrated circuit con~igurations

[4]. A subdomain basis MOM solution for coupled uni-

form microstrip transmission lines has been implemented,

and yields accurate results in the form of current distri-

butions and propagation constants for the dominant and

several higher-order modes [5]. However, this method re-

quires a large number of basis functions to achieve de-

sired accuracy, yielding lengthy computation times.

In this work an entire-domain basis Galerkin’s method
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MOM solution of the integral equation formulation is im-

plemented. The basis functions are carefully chosen to in-

corporate expected physical effects at the edges of the

strips. Besides the advantage of allowing closed-form

evaluation of relevant spatial integrals, it is found that

excellent accuracy is obtained for as few as three basis

functions for each current component of low-order modes,

yielding compact approximate closed-form solutions for

currents, as well as resulting in a substantial savings in

computation time.

In Section II the mathematical formulation of the phys-

ical problem and the numerical solution technique utilized

are introduced. The formulation is specialized to the case

of natural modes of a pair of identical uniform coupled

microstrip transmission lines. Numerical results in the

form of propagation constants and strip current distribu-

tions (eigenvalues and eigenmodes) for the dominant and

several higher-order eigenmodes of the coupled micro-

strip system are presented in Section III. Conclusions and

areas for further investigation are discussed in Section IV.

II. FORMULATION

Consider the general open coupled microstrip geometry

depicted in Fig. 1. A rigorous solution of Maxwell’s

equations results in a system of coupled integral equations

satisfied by the unknown device surface currents [4]. For

the axially-uniform systems as depicted in Fig. 2, an as-

sumed propagation dependence of exp [ j(tit – ~z)] allows

these equations to be simplified. For an arbitrary system

of N uniform coupled microstrip transmission lines [5],

the following axially-transformed coupled system of in-

tegral equations holds:

“ Z1(3’)(W =0, F=q j=l, . . ..N (1)

Here 11 is the unknown axially-transformed eigenmode

surface current on the ith strip, ~ is the transformed elec-

tric Hertzian potential Green’s dyad of the microstrip

background structure, ~ is the unknown eigenvalue (prop-

agation constant) of the coupled mode, $j is a unit tangent

to the jth strip, Ii is the cross-sectional contour of the ith

strip, and @ = V~ + jrz = (d/dx)f + (d/dY)$ + ~~2 is

the axially-transformed del-operator.
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Fig. 1. Generalized system of N nonuniform coupled integrated microstrip
transmission lines.
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Fig. 2. Two identical axially-uniform thin coupled microstrip transmis-
sion lines.

The Hertzian potential Green’s dy~d decomposes into
a principal and a reflected part, ~ = Zgp + E’, where gp

is the 2-dimensional unbounded-space Green’s function

in integral representation, and the reflected part has the

dyadic form:

(2)

The scalar components of the reflected Green’s dyad are

given in terms of inverse-transform spectral integrals:

mgt~R,(X)

s
R.(A)

#(~-~ ’)e-Pc(Y+Y’)

gn =
47rpc

d~ . (3)

g. ‘m C(A)

The wavenumber parameters are defined as A 2 = ~2 +

t2, P: = ~2 –k:, p; = ~2 – kj, and the reflection and

coupling coefficients are given by

R = Pc – Pf C@h ( Pft) KP. – pf tanh ( pft)
t

P. + Pf Coth ( pfO
; ‘“ = KpC + pf tanh ( PfO

2(K – l)pC
c=

[P. + pf Coth ( PfOl [KP~ + pf tanh ( pf t)];

(4)

A. Two Identical A4icrostrip Lines

Consider a simple coupled system consisting of a pair ‘

of identical open microstrip transmission lines. Assume

that the lines are infinitely thin and are extended axially

to infinity, as shown in Fig. 2, where b is half of the spac-

ing between the centers of the two microstrip lines and w

is half of the strip width. In this case (1) reduces to

“ Zi(X’j j“ = 0; f) dX’ = 0; j=l,2 (5)

where interchange of differentiation and integration is

valid when y # O. As y ~ O the contour of spatial inte-

gration is a path along the x-axis, denoted lX,. The tangen-

tial unit vector and the surface current decompose as I =

ftX + ftz; ~ = lkX + f?kz. To evaluate (5) we rewrite the

integral representations of the scalar components gp and

g~,n, c as

g!n,c(~l~’; i-) =
J

m i~n, c(?/X’; .$, f) dt

—m

iP =

~J&(x–x’)e–Pcl Yl

41rpc

ir

H]

R,
ej< (X–X’)e –Pcy

in = R,
47rpc “

(6)

iC c

Substituting (6) into (5) in the limit y ~ O yields two

coupled integral equations by letting ~ = f and 1 = 2.

They are

– t(l + R, – p, C)(~kx + ~kz)] d~ &’ = O (7a)

2

!!

m ejt(x–x’)

2: z A=pc [k~(l -t Rf)kz
i=l 11, —m

– ~(1 + & – PCC) (tkx + ~kz)] dg dx’ = O. (7b)

The final form of the equations for the coupled microstrip

structure is obtained by resolving integration paths as i?X1

=[–b–w, –b+w]andfX2=[b–w, b +w]:

–b~w m

!!

ejf (x – x’ )

~.x. ~TpC [k~RkX1 – <(R – C’)
–b–w –m

- (.W.2 + rkzz)] d$ &’ = O (8a)
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–b~w m

M

~jg (x – x’ )

‘.z. ~TpC [k;RkZ1 - ~(R -
–b–w –CO

“ (R, + UCz,1 dg dx’

bhw m

H

~jf (x – x’ )

+ ~Tpc [k:RkZ, - C(R
b–w –co

“ (&kJ, + @z2)]cig dx’ = o.

c’)

cl)

(8b)

Here kXl, kZl, and kXz, k,z are the transformed transverse

and axial current components on strips 1 and 2, respec-

tively, and

2pc
R=l+R1=

PC + Pf Coth (Pf~)

2(K – I)p:
c’ =pcc=

[P. + pf Coth ( pft)l [KP, + pf tanh ( pft)]

(9)

Equation (8a) and (8b) are the appropriate coupled in-

tegral equations for natural modes of the uniform micro-

strip structure of Fig. 2. They have a nontrivial solution

only when t = ~~ is an eigenvalue of the coupleds ystem,

where m= O, l,”.” is the corresponding eigenmode

number. They are further simplified by taking advantage

of the symmetry in x inherent in the coupled structure.

This allows the coupled equations can be written in terms

of just one set of microstrip currents, where the other set
is taken as the appropriate symmetric or antisymmetric

extension. We now turn to a MOM solution of the cou-

pled integral equations using entire-domain basis func-

tions.

B. Entire-Domain Basis MOM Solution

The effectiveness of a MOM solution for (8) depends

on a judicious choice of basis functions. These basis func-

tions should incorporate as closely as possible the physi-

cal conditions of the actual axial and transverse currents

on the microstrip. An overriding concern here k in the

proper behavior of current components at the edges of the

micro strip lines. In this work, instead of using subdomain

basis functions which permit solutions satisfying the elec-

tromagnetic boundary conditions only at discrete points,

we use entire-domain basis functions for expansion of the

unknown surface currents and for testing the results (Gal-

erkin’s method). If the basis functions used closely re-

semble the unknown to be represented, the numerical so-

lution will yield results of increased accuracy using far

fewer terms.

It is a well known fact that the current distribution is

singular at the edges of an isolated micro strip. According

to Maxwell [6], the surface charge density distribution on

an isolated strip (in the absence of a film layer) is a(x) =

oo/m ~1 – (x/w)z, where U. is the total charge on the

strip and w is half-width of the strip. In the dynamic case,

this distribution applies to the TEM solution for the lon-

gitudinal surface current as long as the ground-plane is

spaced far enough away from the strip [7]. For real hy-

brid-mode ana~lysis, we can assume as a first step that the

longitudinal current distribution of the fundamental mode

follows the pattern of a pure TEM mode, and can be ex-

pressed approximately as kZ(x’) s vu (x’), where v is the
phase velocity. The corresponding transverse current dis-

tribution can be obtained by use of the continuity equation

~kX(x’ )/dx + j{k, (x’) ~ –jwo(x’ ) [5]. For any micro-

strip eigemnode the longitudinal current is singular at the

edges of the :strip, while the transverse current is zero

there. The transverse current is usually small compared

to the longitudinal current (in the following analysis, it is

at least one order of magnitude smaller) and its magnitude

is proportional to the normalized strip width.

Based on th~e discussion above, it is found that Che-

byshev polynomials multiplied by appropriate edge-fac-

tors are suitable expansion functions for eigenmodes of

this structure. We choose Chebyshev polynomials of the

second kind, U.(x), to expand the transverse eigenmode

currents; the latter can accurately be represented by a lin-

ear combinaticm of just few functions of this kind. Simi-

larly, Chebyshev polynomials of the first kind, T,(x), are

used for axial current expansion. Use of these weighted

functions has the additional advantage of allowing rele-

vant spatial integrals to be evaluated in closed form. Other

examples of use of weighted Chebyshev polynomials as

basis functions can be found (e.g., [8]). An instructive

compairson of the convergence properties of weighted

Chebyshev polynomials and regular trigonometric func-

tion is given in [9]. Based on this discussion, we expand

the unknown currents as follows:

r

‘z(x’)=J-i+Yb’’T’Fb)”’10)
Here a. and b,l are the usual known expansions coeffi-

cients representing the contribution of each order of Che-

byshev polynomials U. (x) and T.(x) to the unknown sur-

face currents, and the square-root factors in front of the

summation terms give the anticipated edge behavior. To

test the coupled equations we follow Galerkin’s method

and utilize the same functions for testing. Tabulated in-

tegrals in [10] and the Appendix are used for the calcu-

lations involved, yielding the following equations for

symmetric eigenrnodes of the coupled structure:

N– 1 nm . i$b

“ T1(R – C’)J~+l(&v).J~(fw) df = O ( la)
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“ T, [k:l? – J-2(R– c’)]Jm(&v).ln(@’)d’g = o.

(llb)

Similarly, for antisymmetric modes we have

N–1

i

w jeJcb

A: ~~oa.(n + 1) _~~T2[k~R - ~2(R - C’)

“ T2(R– C’).lm+ l($w).ln(tw) 4 = o (12a)

N– 1

i

m jejtb

2: ~~o a.(n + l){ _@ ~ 7’,(R - C’).l.($w)

“ T2[k:R – ~2(R – c’)].J,,l(~w)Jn (~w) d< = o.

(12b)

Here 7’1 = cos (~b) Re {jn} – sin (tb) Im {j”}, T2 =

cos (~b) Im { j n } + sin ($b) Re { j“ }. Integration limits

on the spectral variable & can be further reduced by con-

sideration of the parity of the integrands; the results have

integration limits [0, m). The final equations can be writ-

ten in matrix form as

[1.zU Zxz

z= Zzz

a. -

aN–1

bO

bN-,
. .

= o. (13)

Each element in the (2N X 2N) Z matrix is in terms of a

spectral integral on ~, and Uo, “ “ . , aN– 1, bo, - “ “ , bN _ 1

are the unknown coefficients for the expansion polyno-

mials. To obtain a non-trivial solution the determinant of

the coefficient matrix must vanish; since matrix elements

depend on the unknown propagation constant ~, we can

iterate to find eigenvalues ~,,, for system eigenmodes. Nu-

merical results of this technique are given in the next sec-

tion.

111. NUMERICAL RESULTS

The method described above was implemented to cal-

culate propagation constants (eigenvalues) and currents

(eigenmodes) for the fundamental and higher order modes

TABLE I

EIGENVALUES

,/% ,. E. ,.
10 Ghz 20 GHz 40 GHz

1.10 3.00638 2.17164 2.23297

1.25 2.98567 2.12381 2.21197

)

Symmetric

1.50 2.95200 2.09482 2.19654
modes

Isolated 2.89586 2.06867 2.17533

1.50 2.83309 2.05419 2.15925 Antisymmetric

1.25 2.78686 2,01026 2.11995
1

modes

1.10 2.75250 1.94495 2.05663

of the uniform coupled microstrip structure of Fig. 2. For

convenience in comparison with other results [11], [12]

the case nf = kf/kO = 3.13, nC = 1.0, t = 0.635 mm, w

– 1.5 mm and a varying separation b is presented here.—

A. Eigenvalues

Table I shows eigenvalues (normalized propagation

constants) for the fundamental and first two higher cou-

pled modes at operating frequencies near cutoff. Each

coupled mode is seen to agree with the well known fact

that ~. < ~,,0 < r,, where ra, f,.o, and [, are eigenvalues

corresponding to antis ymmetric, isolated, and symmetric

coupled modes, respectively. Also, the smaller the strip

separation b/w, the larger (smaller) the eigenvalues for

symmetric (antisymmetric) system modes, respectively.

When the separation of the coupled strips is large enough

(about b/w z 4), the eigenvalues converge to the cor-

responding ioslated one; indeed, the symmetric and anti-

symmetric modes can be viewed as emerging from the

corresponding isolated mode. Fig. 3 shows the dispersion

curve for the coupled fundamental EHO mode. As strip

separation decreases eigenvalues of the EHO symmetric

and antisymmetric system modes are separate further; ul-

timately, when the strips contact on inside edges, the EHO

symmetric mode goes to the EHO mode of an isolated strip

with double width, and the EHO antis ymmetric mode goes

to the EHI mode of the same width-doubled strip, as ex-

pected. Eigenvalues for EHO and EH1 modes over a wide

range of frequency (up to 100 GHz) are calculated; the

dispersion curves for several different separations are

sketched in Fim. 4 and 5. The behavior of eizenvalues

for this couple~structure are seen to be in good ~greement

with the results obtained by using the analysis in [1].

B. Eigenmode Currents

The axial and transverse current for each mode men-

tioned above are shown in Figs. 6-8. In numerically

quantifying currents we found three Chebyshev polyno-

mials sufficient to accurately represent the surface current

of low-order modes on the isolated microstrip. For cur-

rents on each microstrip of the coupled system, we uti-

lized the first five polynomials to achieve a more accurate

result. It is seen in the figures that due to the repulsion of

the charge, currents for symmetric modes have smaller

magnitude near the inside edge than at the outside edge,
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Fig. 3. Dependence of propagation constants (eigenvalues) ~ for dominant (EHO ) eigenmodes of two coupled microstrip lines

upon line-to-line spacing; symmetric and antis ymmetric coupled system modes are seen to emerge from the corresporlding
isolated line EHO mode.
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Fig. 4. Dispersion curves for isolated- and coupled-line fundamental modes (EHO eigenmodes).
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Fig. 6. Eigenmode currents for isolated and coupled dominant (EHO ) modes. (a) Transverse currents. (b) Axial currents.

a result intuitively expected. Similarly, antis ymmetric

modes have larger currents near the inside edge. In all

cases, we can see that currents for isolated line lie be-

tween the two groups of currents of symmetric and

antisymmetnc system modes.

IV. CONCLUSION

A rigorous full-wave spectral-domain integral equation

formulation has been presented for accurate analysis of

coupled microstrip transmission lines. A method of mo-

ments solution utilizing entire-domain basis functions and

Galerkin’s method, incorporating appropriate edge con-

ditions for transverse and longitudinal current compo-

nents, permits closed-form evaluation of relevant spatial

integrals. In contrast with earlier subdomain basis solu-

tions, improved accuracy is obtained using far fewer

terms. Numerical results in the form of propagation con-

stants and current distributions for the dominant and first

two higher-order modes compare favorably to results of

other techniques.

A more difficult problem which can be rigorously

treated by the formulation presented here is the solution

in the case of coupled microstrip transmission lines op-

erating in loss y regimes, where excitation of surface

waves and the radiation spectrum in the integrated circuit

background structure could provide dominant coupling ef-

fects. This condition occurs when the propagation con-

stant of the coupled system falls below the eigenvalue of

a surface-wave mode supported by the integrated circuit

background slabe waveguide structure. In this case sin-

gularities in the spectral integrands move close to the real

axis, and complex-plane evaluation techniques become
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Fig. 7. Eigenmode currents for isolated and coupled fir5t higher-order (EH, ) modes. (a) Transverse currents. (b) Axial currents.

necessary. Work along these lines is proceeding, and is

expected to yield results in the near future [13]-[ 15].

APPENDIX

Other than the tabulated integral formulas in [10] we

need to evaluate following integrals:

!
1

_, m Cos axu.(x) h

!

1

_l = sin UXU.(X) &

!
1

–1 Cos ‘T’(x) %/A

!
1

–1 ‘in ‘T’ ‘x) &“

(Al)

Gradshteyn’s [10] equation (7-321), p. 830, provides

~

1

(1 – xz)”-ltze~~c:(’) dx

–1

7r21-”#r(2v + n) _u—_— a .lU+. (a). (A2)
n!r (v)

Using the fact U.(x) = C$l) (x), which relates Chebyshev

to Gegenbauer polynomials, the above formula yields the

results:

!
1

_, J-i-=7 Cos axun(x) ah

=,~(n + 1)
.l. +l(a) Re {in}

a
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—.

Position x (mm)
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Posltlon x (mm)

(b)

Fig. 8. Eigenmode currents for isolated and coupled second higher-order (EHZ ) modes, (a) Transverse currents. (b) Axial

!
1

_, ~ sin axU.(x) dx

= T(F’Z+ 1)
J.+l(u)Im {i”}.

a

A similar procedure can be used for evaluating

maining integrals; refer to equation (7-355), p.

[10]:

currents.

From this we obtain the results:

!

I

(A3) –1 ‘Os ‘T’’(X) A

the re-

[

0, for odd n.

836 of = (– 1)’12 mJ. (a), for even n.

J
1 !“

1

‘2” + ‘ ‘x) ‘in a &
= (–l)n~.12n +1(a)

o
–1 ““ ‘T” ‘x) A

!

1

[

(– 1)(”- *)/27rJ. (a), for odd n.

‘2” Cos a & = ‘-1)n~J2n(a)”
(A4)

.— (A5)
o 0, for even n.
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Further algebra provides

for use:

nl

the following integral formulas

\
h.

cos axT. (X) , , = Re {i”~.1.(a)]
J–1 41 –x”

= m~.(a) Re {i”}

!
1

–1 “n ‘T”?) A = lm ‘in”yn(a)}

– m.in (a) Im {i”} (A6)—

REFERENCES

[1] K. C. Gupta, R. Garg, and I. J. Bahl, Micrmtrip Lines arrd Slotlbres.
Norwood, MA: Artech House, 1979, p. 303.

[2] E. G. Farr, C. H. Chan, and R. Mittra, “A frequency-dependent
coupled-mode analysis of multiconductor microstrip lines with appli-

cation to VLSI interconnection problems, ” IEEE Trans. Microwave

Theory Tech., vol. MTT-34, no. 2, pp. 307-310, Feb. 1986.

[3] J. R. Mosing and T. K, Sarkar, “Comparison of quasi-static and ex-

act electromagnetic fields from a horizontal electric dipole above a

lossy dielectric backed by an imperfect ground plane, ” IEEE Trans.

Microwave i%eory Tech., vol. MTT-34, no. 4, pp. 379-387, Apr.
1986.

[4] J. S. Bagby and D. P. Nyquist, ‘ ‘Dyadic Green’s function for inte-

grated electronic and optical circuits, ” IEEE Trans. Microwave The-
ory Tech., vol. MTT-35, no. 2, pp. 206–210, Feb. 198’7.

[5] C._-H. Lee and J. S. Bagby, “Analysis of coupled microstrip trans-

mission lines with EFIE method, ‘‘ in Proc. 1988 Int. Radio Science

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

(URSZ) Meeting, Syracuse, NY, June 1988, p. 318.
J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol.
1, New York: Dover, 1954, pp. 296-297.

E. J. Denlinger, “A frequency dependent solution for microstrip

transmission lines, ” IEEE Trans. Microwave Theory Tech., vol.

MTT-19, no. 1, pp. 30-39, Jan. 1971.

E.-B. E1-Sharawy and R. W. Jackson, “Coplanar waveguide and slot

line on magnetic substrates: analysis and experiment, ” IEEE Trans.

Microwave Theory Tech., vol. 31, no. 6, pp. 1071-1079, June 1988.
A. Frenkel, “On entire-domain basis functions with square-root edge
singularity, ” IEEE Trans. Antennas Propagar., vol. AJ?, no. 9, pp.

1211-1214, Sept. 1989.
I. S. Gardshteyn and L M. Ryzhik, Table of Integrals, Series, and
Products. New York: Academic Press, 1980, p. 836.

H. Ermert, “Guiding and radiation characteristics of planar wave-

guides, ” IEE Microwave, Optics and Acoustics, vol. 3, pp. 59-62,
Mar. 1979.

A. A. Oliner, ‘ ‘Leakage from higher modes on microstrip line with

application to antennas, ” Radio Sci., vol. 22, no. 6, pp. 907-912,

NOV. 1987.

K. A. Michalski and D. Zheng, “Rigorous analysis of open micro-

strip lines of arbitrary cross-section in bound and leaky regimes, ”
IEEE Trans. Microwave Theory Tech., to be published.

[14]

[15]

57

J. S. Bagby, C.-H. Lee, D. P. Nyquist and Y. Yuan, “Propagation

region on integrated micro strip lines, ” IEEETrans. Microwave The-

ory Tech., to be published.

C.-H. Lee, Integral Equation Analysis of Microstrip Transmission

Lines, Ph.D. dissertation, the University of Texas at Arlington, Dec.
1989.

Jonathan S. Bagby was born in Denville, NJ, in
1957. He received the B.S. degree in 1980 from

Michigan State University, the M.S. degree in

1981 from Ohio State University, and the Ph.D.
degree from Michigan State University in 1984,-
all in electrical engineering.

From 1984 to 1991 he was an Assistant Profes-

sor of Electrical Engineering at the University of
Texas at Arlington, and since 1991 has been an

Associate Professor of Electrical Engineering at

Florida Atlantic University. His research interests

include microwave integrated circtiits, integrated optical circuits, radar/
radome interactions, electromagnetic radiation and scattering, and guided
wave optics.

Dr. Bagby is a member of Eta Kappa Nu, Tau Beta Pi, Sigma Xi, and

Phi Kappa Phi. He was the recipient of the 1983 MSU Excellence in Teach-

ing Citation, and was named the UTA College of Engineering Outstanding

Young Faculty Member in 1989.

Ching-Her Lee was born in Pingtung Taiwan, in

1954. He received the B.S. and M.S. degree in

electronic and automatic control engineering from
Feng-Chia University, Taichung, Taiwan, in 1977

and 1981, respectively, and the Ph.D. degree in
electrical engineering from The University of
Texas at Arlington in 1989.

From 1981 to 1985, he was on the faculty of

Chin-Yih Institute of Technology, Taichung, Tai-
wan, where he was the head of Electronic Engi-

neering Department. While there, his specialty

was high frequent y (circuit designs. He is currently an Associate Professor

at National Changhiiu University of Education, Changhua, Taiwan. His
research interests include microstrip devices, delectric optical waveguides,

and numerical methods and electromagnetic.
Dr. Lee is a member of the Tau Beta Pi and The Chinese Institute of

Engineers. He was a Recipient of the Cash Award of Youth’s Development

and Invention and Award of Technical Invention of 1982, which is spon-
sered by the Ministry of Education, Republic of China (at Taiwan).

Y. Yuan, photograph and biography not available at the time of publica-

tion.

D. P. Nyquist (S’63-M’67), photograph and biography not available at
the time ‘of publication.


